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Abstract 

Background Saliva measures are generally more accessible than blood, especially in vulnerable populations. How-
ever, connections between aging biology biomarkers in different body tissues remain unknown.

Methods The present study included individuals (N = 2406) who consented for saliva and blood draw in the Health 
and Retirement Telomere length study in 2008 and the Venous blood study in 2016 who had complete data 
for both tissues. We assessed biological aging based on telomere length in saliva and DNA methylation and physiol-
ogy measures in blood. DNA methylation clocks combine information from CpGs to produce the aging measures 
representative of epigenetic aging in humans. We analyzed DNA methylation clocks proposed by Horvath (353 CpG 
sites), Hannum (71 CpG sites), Levine or PhenoAge, (513 CpG sites), GrimAge, (epigenetic surrogate markers for select 
plasma proteins), Horvath skin and blood (391 CpG sites), Lin (99 CpG sites), Weidner (3 CpG sites), and VidalBralo (8 
CpG sites). Physiology measures (referred to as phenotypic age) included albumin, creatinine, glucose, [log] C-reactive 
protein, lymphocyte percent, mean cell volume, red blood cell distribution width, alkaline phosphatase, and white 
blood cell count. The phenotypic age algorithm is based on parametrization of Gompertz proportional hazard 
models. Average telomere length was assayed using quantitative PCR (qPCR) by comparing the telomere sequence 
copy number in each patient’s sample (T) to a single-copy gene copy number (S). The resulting T/S ratio was propor-
tional to telomere length, mean. Within individual, relationships between aging biology measures in blood and saliva 
and variations according to sex were assessed.

Results Saliva-based telomere length showed inverse associations with both physiology-based and DNA methyla-
tion-based aging biology biomarkers in blood. Longer saliva-based telomere length was associated with 1 to 4 years 
slower biological aging based on blood-based biomarkers with the highest magnitude being Weidner (β =  − 3.97, 
P = 0.005), GrimAge (β =  − 3.33, P < 0.001), and Lin (β =  − 3.45, P = 0.008) biomarkers of DNA methylation.

Conclusions There are strong connections between aging biology biomarkers in saliva and blood in older adults. 
Changes in telomere length vary with changes in DNA methylation and physiology biomarkers of aging biology. We 
observed variations in the relationship between each body system represented by physiology biomarkers and biolog-
ical aging, particularly at the DNA methylation level. These observations provide novel opportunities for integration 
of both blood-based and saliva-based biomarkers in clinical care of vulnerable and clinically difficult to reach popula-
tions where either or both tissues would be accessible for clinical monitoring purposes.
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Introduction
Aging is hypothesized to be a key driver of major age-
related pathologies and vascular disease [1–3]. Measures 
of aging biology have been proposed as a proxy to the 
global aging status of an individual [4]. Different tissues 
are commonly used, including saliva and blood deriva-
tives, to measure biological aging. Blood tissues used 
include venous versus capillary and whole blood versus 
point of care and other blood products such as plasma 
[5]. Saliva is considered one of the most accessible body 
tissues and have been effectively used in clinically diffi-
cult populations, among whom obtaining blood access is 
not feasible [6]. Clinical uses of saliva include monitoring 
drug doses of cardiovascular and neurological disorders 
such as diabetes mellitus, multiple sclerosis, and epi-
lepsy [6]. It has proven economic efficacy due to its easier 
access and the need for less materials and time to obtain, 
ship, and store samples [7, 8].

There are variations in concentration and abundance of 
molecular analytes between saliva and blood [9]. These 
established differences would prompt the use of either 
tissue according to the targeted investigation, age group, 
or endpoint being assessed [10]. Differences in abun-
dance may therefore directly affect the precision of what 
is measured and may translate in differences in predict-
ing risk of complications [10–12]. Similarly, differences 
between blood and saliva include variations according to 
age, sex, type and size of salivary gland, blood type, and 
physiological status, which are more likely to influence 
salivary tissue content [13, 14].

The precise differences between those measures would 
provide opportunities for more effective diagnostic and 
prognostic tools in clinical medicine and would open 
avenues for interventions at a whole population scale as 
cost-effective screening and monitoring tools become 
available in the near future [14]. In the present study, we 
aimed to assess connections between cross-tissue (i.e., 
saliva-blood) and intra-tissue (i.e., blood-blood) aging 
biomarkers to evaluate whether saliva-based telomere 
length biomarkers of aging biology reflect changes in 
blood-based DNA methylation and physiology biomark-
ers in older adults.

Methods
Study population
The Health and Retirement Study (HRS) is a nationally 
representative longitudinal survey that recruited more 
than 37,000 individuals aged 50 and older in the USA. 
The survey has been conducted every 2 years since 1992 
with a focus on issues related to changes in health and 
economic circumstances in aging at both the individual 
and population levels [15]. HRS data are linked to records 
from Social Security, Medicare, Veteran’s Administration, 

the National Death Index, and employer-provided pen-
sion plan information. Genetic ancestry in HRS is iden-
tified through PC analysis on genome-wide SNPs [15]. 
HRS is coordinated by the Institute for Social Research 
at the University of Michigan. The present study included 
individuals who consented for saliva and blood draw in 
the health and retirement telomere length study in 2008 
and the venous blood study in 2016 respectively and who 
had complete data for both tissues (N = 2406) [15–17]. 
Individuals without data on telomere length, physiology, 
and DNA methylation measures were not included in the 
present investigation to allow for direct individual com-
parisons using blood-based biomarkers and saliva-based 
biomarkers. The included sample had similar overall age 
and sex distribution to the full sample with weighted 
mean age equals 67 and 54% females. The Health and 
Retirement Study is reviewed and approved by the Uni-
versity of Michigan’s Health Sciences IRB. The present 
study has been conducted in accordance with STROBE 
guidelines for observational studies (https:// www. strobe- 
state ment. org/).

Biological aging biomarkers
We assessed biological aging based on (A) telomere 
length, (B) DNA methylation, and (C) physiology 
measures.

(A) Telomere length measurement
Telomere length data were available from 5808 HRS 
respondents who consented for saliva sample draw dur-
ing the 2008 interview wave. Assays were performed by 
Telome Health (Telomere Diagnostics, http:// www. telom 
eheal th. com/). Average telomere length was assayed 
using quantitative PCR (qPCR) by comparing telomere 
sequence copy number in each patient’s sample (T) to 
a single-copy gene copy number (S). The resulting T/S 
ratio was proportional to telomere length, mean. The 
HRS 2008 Telomere data set is sponsored by the National 
Institute on Aging (NIH NIAU01AG009740 and RC4 
AG039029) and was conducted by the University of 
Michigan [17].

The venous blood substudy (VBS) and assay protocol in 
2016 Health and Retirement Study All respondents, 
with the exception of proxy and nursing home respond-
ents, who completed the HRS interview in 2016 (visit 
13) were asked to consent for blood draw (78.5% of 
participants interviewed through September 5, 2017) 
[16]. Physiology-based biomarkers were assessed on the 
whole sample of participants who consented for blood 
draw, while DNA methylation was assessed in a sub-
sample randomly selected and fully representative of the 
whole sample [16]. Blood samples were centrifuged and 

https://www.strobe-statement.org/
https://www.strobe-statement.org/
http://www.telomehealth.com/
http://www.telomehealth.com/
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shipped overnight to CLIA-certified Advanced Research 
and Diagnostic Laboratory at the University of Minne-
sota. Tube processing was done within 24 h of arrival at 
the lab (within 48 h of collection). All assays were done 
at the University of MN Advanced Research and Diag-
nostic Laboratory (ARDL) under the direction of Bharat 
Thyagarajan.

(B) DNA methylation
DNA methylation assays were done by Infinium Meth-
ylation EPIC BeadChip at the University of Minnesota 
following the manufacturer’s instruction. The minfi pack-
age in R was used in data processing, and DNA meth-
ylation measures were provided through HRS to the 
research community [18, 19]. Epigenetic clocks are com-
monly based on portions of the genome where methyla-
tion changes are related to chronological age and, more 
recently, health outcomes [18]. The clocks combine infor-
mation from CpGs to produce the aging measure that 
represents an indicator of epigenetic aging [18]. DNA 
methylation assessment included the following clocks: 
Horvath [20, 21] and Hannum et al. [22], Levine et al. or 
PhenoAge [23], Lu et  al. (referred to as GrimAge) [24], 
Horvath skin and blood [25], Lin [26–28], Weidner [28], 
and VidalBralo [29]. The Horvath epigenetic clock pre-
dicts age using 353 CpG sites in the DNA methylation 
profile and incorporates 51 healthy tissues and cell types 
[20, 21]. The Hannum et  al. clock comprises 71 CpG 
sites selected from the Illumina 450 k array that capture 
changes in chronological age. It was developed in whole 
blood of humans at ages 19 to 101 [22]. DNAm Pheno-
Age based on 513 CpGs predicted phenotypic age in 
whole blood from the same sample [23]. GrimAge is a 
mortality predictor and was constructed based on surro-
gate markers for select plasma proteins ((adrenomedul-
lin, β-2-microglobulin, CD56, ceruloplasmin, cystatin 
C, EGF fibulin-like ECM protein 1, growth differentia-
tion factor 15, leptin, myoglobin, plasminogen activator 
inhibitor 1, serum paraoxonase/arylesterase 1, and tissue 
inhibitor metalloproteinases 1) and smoking pack-years 
in a two-stage procedure [24].GrimAge is suggested to 
have predictive ability for time to death, coronary heart 
disease, cancer, and age-related conditions [24]. Skin and 
blood was developed as a novel and highly robust DNAm 
age estimator (based on 391 CpGs) for human fibroblasts, 
keratinocytes, buccal cells, endothelial cells, lymphoblas-
toid cells, skin, blood, and saliva samples [25]. The clock 
is suggested to have high age correlations in sorted neu-
rons, glia, brain, liver, and bone samples [25]. The skin 
and blood clock shares 45 CpGs with blood-based Han-
num and 60 CpGs with Horvath pan-tissue clock [21, 22]. 
Lin was developed using a 99-CpG aging model derived 
in DNAm profiles of normal blood samples and trained 

on life expectancy [26–28].Weidner was developed based 
on three age-related CpGs located in the genes ITGA2B, 
ASPA, and PDE4C to estimate epigenetic aging in blood 
[28]. VidalBralo was developed in whole blood of 8 CpG 
sites that were selected as the most informative CpGs in 
a training dataset of 390 healthy subjects and validated in 
three datasets [29].

The chronological classification of the clocks can be 
summarized as follows: the first-generation clocks were 
developed using machine learning to predict chrono-
logical age. These clocks demonstrated two important 
proofs of concept; they recorded increases in clock age 
within individuals as they grew older [30, 31], and more 
advanced clock-age estimates (i.e., clock ages older than 
chronological age) were associated with increased mor-
tality risk among individuals of the same chronological 
age [23]. Second-generation DNAm clocks were devel-
oped from analysis of mortality risk, incorporating 
information from DNAm prediction of physiological 
parameters [23, 24]. These second-generation clocks are 
more predictive of morbidity and mortality [32] and are 
proposed to have improved potential for testing impacts 
of interventions to slow aging [33].

(C) Physiology measures
Among available and validated measures of biologi-
cal aging based on physiologic parameters, we opted 
to use physiology-based phenotypic age described in 
detail by Liu et  al. [34]. This clock uses the following 
nine biomarkers assessed in blood representing the dif-
ferent body systems: albumin, creatinine, glucose, [log], 
C-reactive protein [CRP], lymphocyte percent, mean cell 
volume, red blood cell distribution width, alkaline phos-
phatase, and white blood cell count [35]. These biomark-
ers were selected using a Cox proportional hazard elastic 
net model for mortality. The phenotypic age algorithm is 
based on parametrization of two Gompertz proportional 
hazard models, one including the 10 selected variables 
and the other including only chronological age [34, 36].

Statistical analysis
Summary statistics were assessed as median (IQR) for 
continuous variables and percentages for categorical 
variables. Survey weights were used in descriptive analy-
sis [37, 38]. Correlation coefficients (Pearson) between 
cross-tissue (saliva-blood) and intra-tissue (blood-blood) 
measures were assessed for magnitude, direction, and 
statistical significance with correction for multiple com-
parison [39, 40]. We have also assessed correlations 
between each physiological biomarker with telomere 
length and DNA methylation biological aging meas-
ures. Linear regression models were conducted with 
DNA methylation or physiology-based biological aging 
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measure as the dependent variable. Blood measures were 
used in the raw form to allow for direct comparisons. 
Telomere length was logged and included in the models 
as tertiles [41]. Tertiles were used to allow for interpret-
able change per unit increase in telomere length. Models 
were adjusted for sex, sex and telomere length interac-
tion, and chronological age difference in years between 
time at saliva and blood draws. These covariates were 
determined a priori with emphasis on sex and chrono-
logical age for their established biological relevance and 
data completeness [35, 42]. Inclusion of sex and telomere 
length interaction term was determined a priori based on 
hypothesized sex-based differences in telomeres [42–45]. 
Sex-stratified models adjusted for chronological age dif-
ference in years between time at saliva and blood draws 
were also conducted. Sensitivity analysis was conducted 
to assess the models after exclusion of telomere length 
T/S ratio greater than 2.0 since greater values are more 
likely to be artificial in salivary samples [46]. Models were 
also assessed without sex and telomere length interaction 
term. All analyses were conducted using Stata SE V.16.0.

Results
Population characteristics
A total of 2406 individuals had complete data on salivary 
telomere length and physiology-based measurements, 
and 1029 had complete data on salivary telomere length, 
physiology-based, and DNA-based measurements. 
Median age for the study sample at the time when saliva 
was drawn was 66 years (IQR 59, 72), median age at time 
of blood draw was 74 (IQR 67, 80), the majority were 
females (60%), and African Americans comprised 11% 
of the sample, while the majority were Whites (77%). In 
terms of self-reported health, respondents who reported 
“very good” and “good” represented 34% and 31%, 
respectively. Median time difference between saliva and 
blood draw was 8 years (IQR 8, 8.3) (Table 1, Supplemen-
tary Table  1). For saliva-based telomere length, median 
telomere length was 1.30 (IQR 1.14 and 1.50). For blood-
based measures of DNA methylation, median biologi-
cal ages were as follows: Horvath 69.00, Hannum 57.80, 
Levine 60.70, skin and blood 73.54, Lin 61.60, Weidner 
67.43, VidalBralo 65.15, and GrimAge 71.30. Median age 
for physiology-based biological aging, phenotypic age, 
was 74.41 (Table  1). Weighted summary for variables 
included is described in Supplementary Table 1.

Connections between cross‑tissue (saliva–blood) 
biomarkers of biological aging
There was an inverse relationship between saliva-based 
telomere length and all blood-based measures, such 
that longer telomeres reflected younger biological aging. 
Measures that showed statistically significant correlation 

coefficients included Lin (− 0.067, P = 0.031) and Wei-
dner (− 0.064, P = 0.037) (Table 2).

In tertile analysis of saliva-based telomere length, com-
pared to the lowest tertile, longer saliva-based telomere 
length was associated with 1 to 4 years slower biological 
aging based on blood-based biomarkers with the high-
est magnitude being Weidner (β =  − 3.97, P = 0.005), 
GrimAge (β =  − 3.33, P < 0.001), and Lin (β =  − 3.45, 
P = 0.008) biomarkers of DNA methylation. Models 
were adjusted for sex, sex and telomere length interac-
tion, and time difference between saliva and blood draw. 
Similar results were observed after exclusion of telomere 
length T/S ratio greater than 2 (Table 3, Supplementary 
Table  2). Models without the sex-telomere length inter-
action term showed highest magnitude with Lin (refer-
ence lowest tertile, β =  − 3.69, P < 0.001) and phenotypic 
age (β =  − 3.14, P < 0.001). Sex-stratified models showed 

Table 1 Detailed sample characteristics

a Chronological age at time of telomere assessment. bTime difference represents 
time years between saliva and blood draw. cBiological aging measures are scaled 
per 1-year change; dn = 1, 029 had complete data on salivary telomere length, 
physiology based, and DNA methylation measures. eChronological age at time 
of blood draw assessment

Characteristic Summary (unweighted)

N 2406

Chronological age (years), median (IQR)a 66 (59, 72)

Female, % 1449 (60)

Time difference, median (IQR)b 8 (8, 8.3)

Race

 African American, N (%) 270 (11)

Self-reported health

 Excellent 350 (15)

 Very good 815 (34)

 Good 732 (31)

 Fair 359 (15)

 Poor 98 (4)

Biomarkersc

Saliva based

Telomere length, median (IQR) 1.30 (1.14, 1.50)

Blood-based physiological measure

Phenotypic age, median (IQR) 74.41 (65.6, 83.55)

Blood-based DNA methylation  measuresd

Chronological age (years), median (IQR)e 74 (67, 80)

Horvath, median (IQR) 69.00 (63.00, 75.00)

Hannum, median (IQR) 57.80 (52.06, 63.55)

Levine, median (IQR) 60.70 (54.41, 66.84)

Skin & blood, median (IQR) 73.54 (67.70, 78.25)

Lin, median (IQR) 61.61 (55.09, 68.85)

Weidner, median (IQR) 67.43 (60.90, 76.82)

VidalBralo, median (IQR) 65.15 (61.67, 69.00)

GrimAge, median (IQR) 71.30 (65.64, 77.25)
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variations in effect estimates across measures of biologi-
cal aging in blood between males and females with every 
tertile increase in telomere length (Fig. 1).

Estimates varied widely across the nine physiological 
biomarkers with DNA methylation measures with the 
highest correlation observed with creatinine and lym-
phocyte percent (Supplementary Tables 3 and 4).

Connections between intra‑tissue (blood–blood) 
biomarkers of biological aging
In a secondary analysis, all blood-based biomarkers of 
DNA methylation showed directly proportional and 
strong statistically significant relationships with blood-
based physiology measures of biological aging. Among 
blood-based DNA methylation biomarkers, GrimAge 
showed the strongest correlation with blood-based 
physiological measure, phenotypic age (correlation coef-
ficient = 0.75, P < 0.001) followed by Hannum (0.68, 
P < 0.001), and Horvath skin and blood measure (0.66, 
P < 0.001) (Table 2).

Discussion
In the present study, we found that increases in tel-
omere length measured in saliva was reflected in 
younger biological age based on DNA methylation 
and physiology measured in blood (P < 0.001) 8  years 
later. Such that one tertile increase in telomere length 
in saliva translated to approximately 4  years younger 
biological age in blood measures, with some variations 
between males and females, in a representative popula-
tion of older adults, despite relatively weak correlations 

between cross-tissue measures compared to intra-tis-
sue measures in blood. We also observed correlations 
between physiological biomarkers, creatinine, and 
lymphocyte percent in particular, with DNA methyl-
ation-based biological aging, suggesting potentially 
prominent role of kidney and immunity functions on 
accelerating biological aging. In contrast, alkaline phos-
phatase showed little correlation with biological aging 
measures.

Common biomarkers used in aging investigations 
include telomere length, physiological measures, and 
epigenetic clocks [4, 47, 48]. At the molecular level, 
biological aging changes have been translated to several 
domains including telomere attrition, epigenetic altera-
tions, genomic instability, mitochondrial dysfunction, 

Table 2 Correlation coefficients of the relationship between (1) 
cross-tissue biomarkers of biological aging and (2) intra-tissue 
biomarkers of biological aging

* Denotes a significant P-value with Bonferroni correction [40]

Cross‑tissue 
biomarkers

Intra‑tissue 
biomarkers

Telomere length 
(saliva based)

Phenotypic age 
(blood based)

Biomarkers (blood 
based)

Correlation 
coefficient

p‑value Correlation 
coefficient

p‑value

Phenotypic age  − 0.0264 0.1959 1.00 –

Horvath  − 0.0452 0.1478 0.5776  < 0.001*

Hannum  − 0.0318 0.3082 0.6896  < 0.001*

Levine  − 0.0320 0.3056 0.6525  < 0.001*

Skin & blood  − 0.0367 0.2391 0.6640  < 0.001*

Lin  − 0.0670 0.0317 0.5839  < 0.001*

Weidner  − 0.0647 0.0379 0.3229  < 0.001*

VidalBralo  − 0.0529 0.0897 0.5204  < 0.001*

GrimAge  − 0.0438 0.1608 0.7498  < 0.001*

Table 3 Cross-tissue comparisons between blood-based 
biomarkers of biological aging (outcome variable) and (log) 
saliva-based telomere length (with lowest tertile as reference)

a Measures per tertile increase in telomere length with lowest tertile as 
reference; models were adjusted for sex, sex and telomere length interaction, 
and time difference between saliva and blood draw

Biomarkersa β 95% CI p‑value

Physiological measure, 
phenotypic age

–

 2nd tertile  − 2.30  − 4.30, − 0.30 0.024

 3rd tertile  − 2.38  − 4.37, − 0.38 0.019

Horvath

 2nd tertile  − 1.10  − 3.27, 1.07 0.320

 3rd tertile  − 1.55  − 3.74, 0.63 0.163

Hannum

 2nd tertile  − 1.61  − 3.59, 0.36 0.109

 3rd tertile  − 2.40  − 4.39, − 0.40 0.018

Levine

 2nd tertile  − 1.10  − 3.35, 1.14 0.335

 3rd tertile  − 2.45  − 4.71, − 0.19 0.033

Skin & blood

 2nd tertile  − 0.99  − 2.88, 0.88 0.298

 3rd tertile  − 1.91  − 3.81, − 0.02 0.047

Lin

 2nd tertile 0.12  − 2.40, 2.65 0.921

 3rd tertile  − 3.45  − 6.00, − 0.91 0.008

Weidner

 2nd tertile  − 1.27  − 4.05, 1.50 0.369

 3rd tertile  − 3.97  − 6.76, − 1.17 0.005

VidalBralo

 2nd tertile  − 1.49  − 2.93, − 0.06 0.040

 3rd tertile  − 2.11  − 3.55, − 0.67 0.004

GrimAge

 2nd tertile  − 1.75  − 3.56, 0.05 0.057

 3rd tertile  − 3.33  − 5.15, − 1.51  < 0.001
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cellular senescence, stem cell exhaustion, and altered 
intercellular communication [4, 49]. An important goal 
of measuring aging is to identify both modifiable tar-
gets and informative surrogate endpoints that can be 
used to track effects of aging interventions in humans 
[50, 51]. There are several qualities that have to be rec-
ognized in aging measures to allow optimal function 
and replication [50]. Reliability, sensitivity to changes 
in aging, and feasibility in terms of access and costs are 
among the most important qualities that make an aging 
metric widely implemented and accordingly optimize 
its development and generalizability [50, 52]. Exist-
ing evidence supports associations between telomere 
length and global DNA methylation in youth, which 
are suggested to affect genome stability and disease 
risk susceptability [53]. In addition, DNA methylation-
based estimator of telomere length is suggested to be 
more strongly related to age compared to measured tel-
omere length [54].

Saliva-based biomarkers are likely to provide real-time 
reflections of the individual’s health at the time of collec-
tion [14]. In addition to their highly economic advantages 
and accessibility, saliva is generally a preferred means for 
populations and age groups among whom a blood draw is 
not accessible and in clinically difficult situations [6]. The 
ease of access however should be considered alongside 
factors that directly affect the composition and molecular 
abundance in saliva tissue. Saliva is secreted in response 
to sympathetic and parasympathetic stimuli, and nervous 
stimuli variations directly affect saliva characteristics in 
terms of volume, viscosity, protein, and mucin concen-
trations. There are suggestions that telomere length may 
not be the ultimate biological aging measure; in addition, 
qPCR may be less optimal compared to other methods [3, 

55, 56]. For DNA methylation measured in saliva, recent 
evidence suggests that variations seen across cell types, 
compared to within a cell type, are likely due to variations 
in immune cell contamination [33, 57]. Moreover, saliva 
composition could be affected by medications use, age, 
circadian rhythms among other individual-specific expo-
sures, and conditions such as diabetes, multiple sclerosis, 
liver conditions, and infectious diseases [6, 58, 59]. There-
fore, it is important to consider tissue type and method of 
measurement in biological aging investigations. Recent 
data have also shown the utility of measuring DNA meth-
ylation in saliva and buccal cells with amounts as low as 
10  ng of genomic DNA producing reproducible results 
[60–62].

In terms of blood-based biomarkers, in the present 
study, we used DNA methylation and physiology-based 
measures of aging biology. DNA methylation is the 
mechanism by which a methyl (CH3) group is added to 
DNA resulting in modification of genetic function with-
out changes to DNA sequence. This process regulates 
gene expression and therefore plays an important role in 
human development and disease [63]. DNA methylation 
is suggested to be both tissue and disease specific. Dif-
ferent tissue types have been observed to show strikingly 
varying epigenetic profiles [64]. Commonly used tissues 
include blood and skin as illustrated in the present inves-
tigation [25]. In addition, differences in DNA methylation 
are suggested to be also tissue-state specific. For example, 
genome-wide analysis of DNA methylation in the right 
coronary artery has shown differences in DNA meth-
ylation patterns in areas with advanced atherosclerosis 
compared to areas that are atherosclerotic resistant and 
the great saphenous vein obtained from same patients 
[65]. Tissue-based differences in DNA methylation could 

Fig. 1 Relationship between biological age measures in blood and telomere length (tertiles)
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provide opportunities for novel therapeutic targets and 
tissue areas related to variations in response to treatment 
[64, 65]. However, DNA methylation remains to be chal-
lenged by cost-related barriers and limited consistency in 
the measurements as there is no gold standard to define 
the optimal genome sites and methods of measurements 
in humans [66, 67]. Therefore, comprehensive compari-
sons provide a rigorous and reproducible way to cap-
ture biological aging effects. Prior evidence suggests that 
a substantial proportion of data points do not yield the 
equivalent value when re-quantified from the same DNA 
sample; furthermore, repeated measures are crucial to 
uncover consistent replicable signals of DNA methyla-
tion dynamics across important variables including time, 
between populations, and between exposures [68]. That 
said, cross-tissue variability in DNA methylation pro-
files has been suggested to be more concordant across 
tissues than gene expression changes across tissues with 
age [21, 28]. Physiology-based measures largely represent 
composites of blood-based analytes that represent the 
various body domains that change with aging [1]. In the 
present study, we opted to use phenotypic age, represent-
ing parameters that have been validated as predictors of 
aging in comparable settings including albumin, creati-
nine, glucose, [log] C-reactive protein [CRP], lymphocyte 
percent, mean cell volume, red blood cell distribution 
width, alkaline phosphatase, and white blood cell count 
[34]. A core motivation to using phenotypes of physi-
ological biomarkers is that one biomarker might not be 
sufficient to delineate the underlying pathogenesis; there-
fore, combinations of biomarkers provide an added value 
over single biomarkers and hence more powerful diag-
nostic and prognostic tools [69, 70].

The wide variations in the relationships between each 
physiology biomarker individually with DNA methyla-
tion-based biological aging measures suggest differences 
in how each body system represented by physiology 
biomarkers interacts with biological aging at the DNA 
methylation level. For example, creatinine, a biomarker 
of kidney function, and lymphocyte percent, a blood 
and immunity biomarker, showed strong positive and 
negative correlations respectively with some of the 
DNA methylation-based biological aging measures that 
exceeded their correlation with chronological age in the 
same sample [71–75]. These strong correlations suggest 
potent role of the renal and immunity systems in acceler-
ating biological aging.

There are several limitations in the present study. 
The biomarkers were measured at two different time 
points. This time difference could potentially introduce 

imprecision through impacting the aging profiles across 
time and power; however, time differences were adjusted 
for across all the models. In addition, measures of biolog-
ical aging other than telomere length were not available 
in saliva; however, the sample was restricted to individu-
als with complete information for the three measures 
and therefore allowed for within-individual comparisons. 
Moreover, biological aging measures are likely comple-
mentary to each other rather than alternative exclusive 
tools since they capture different aspects of the aging 
process [4, 49]. Our study was also limited in the number 
of measurements on each individual; therefore, we were 
not able to assess changes in biomarkers over a lengthy 
period of time. Repeated measures however would 
mainly serve as a confirmatory step and might not be fea-
sible to assess over long durations for the same popula-
tion. Lastly, age ranged between 59 and 72 in the present 
investigation, and therefore, the results cannot be extrap-
olated to other age groups and younger individuals who 
joined HRS after 2008 [15].

Collectively, differences in methods of measurement, 
cost, accessibility, and generalizability between saliva 
and blood-based measures determine their applicabil-
ity in large-scale investigations and the feasibility of 
their integration in clinical practice [14, 76, 77]. It is also 
important to consider that blood and saliva secretions are 
interconnected in many ways, presumably a drug circu-
lating in blood passes through capillary wall, the base-
ment membrane, and glandular epithelial cells prior to 
being secreted into the salivary duct. This plasma-sali-
vary interchange is bound by active and passive processes 
and an ultrafiltration step. Drug- or compound-specific 
characteristics also play a role in this process [6, 14]. 
Therefore, uncovering connections between both tis-
sues represent an important step towards optimization of 
accessibility for integration in clinical practice and wide-
scale investigations.

Conclusions
Results of the present investigation suggest strong con-
nections between aging biology biomarkers in saliva 
and blood in older adults. We observed variations in 
the relationship between each body system represented 
by physiology biomarkers and biological aging, particu-
larly at the DNA methylation level. These observations 
could provide novel opportunities for integration of both 
blood-based and saliva-based biomarkers in clinical care 
of vulnerable and clinically difficult to reach populations 
where either or both tissues would be accessible for clini-
cal monitoring purposes.
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